skip to main content


Search for: All records

Creators/Authors contains: "Sangani, Ashok S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The plasma membranes of cells are thin viscous sheets in which some transmembrane proteins have two-dimensional mobility and some are immobilized. Previous studies have shown that immobile proteins retard the short-time diffusivity of mobile particles through hydrodynamic interactions and that steric effects of immobile proteins reduce the long-time diffusivity in a model that neglects hydrodynamic interactions. We present a rigorous derivation of the long-time diffusivity of a single mobile protein interacting hydrodynamically and thermodynamically with an array of immobile proteins subject to periodic boundary conditions. This method is based on a finite element method (FEM) solution of the probability density of the mobile protein diffusing with a position-dependent mobility determined through a multipole solution of Stokes equations. The simulated long-time diffusivity in square arrays decreases as the spacing in the array approaches the particle size in a manner consistent with a lubrication analysis. In random arrays, steric effects lead to a percolation threshold volume fraction above which long-time diffusion is arrested. The FEM/multipole approach is used to compute the long-time diffusivity far away from this threshold. An approximate analysis of mobile protein diffusion through a network of pores connected by bonds with resistances determined by the FEM/multipole calculations is then used to explore higher immobile area fractions and to evaluate the finite simulation cell size scaling behaviour of diffusion near the percolation threshold. Surprisingly, the ratio of the long-time diffusivity to the spatially averaged short-time diffusivity in these two-dimensional fixed arrays is higher in the presence of hydrodynamic interactions than in their absence. Finally, the implications of this work are discussed, including the possibility of using the methods developed here to investigate more complex diffusive phenomena observed in cell membranes. 
    more » « less
  2. Cilia or eukaryotic flagella are slender 200‐nm‐diameter organelles that move the immersing fluid relative to a cell and sense the environment. Their core structure is nine doublet microtubules (DMTs) arranged around a central‐pair. When motile, thousands of tiny motors slide the DMTs relative to each other to facilitate traveling waves of bending along the cilium's length. These motors provide the energy to change the shape of the cilium and overcome the viscous forces of moving in the surrounding fluid. In planar beating, motors walk toward where the cilium is attached to the cell body. Traveling waves are initiated by motors bending the elastic cilium back and forth, a self‐organized mechanical oscillator. We found remarkably that the energy in a wave is nearly constant over a wide range of (ATP) and medium viscosities and inter‐doublet springs operate only in the central and not in the basal region. Since the energy in a wave does not depend on its rate of formation, the control mechanism is likely purely mechanical. Further the torque per length generated by the motors acting on the doublets is proportional to and nearly in phase with the microtubule sliding velocity with magnitude dependent on the medium. We determined the frequency‐dependent elastic moduli and strain energies of beating cilia. Incorporation of these in an energy‐based model explains the beating frequency, wavelength, limiting of the wave amplitude and the overall energy of the traveling wave. Our model describes the intricacies of the basal‐wave initiation as well as the traveling wave.

     
    more » « less